
Compiled by Shiba R. Tamrakar

1

NTFS Basics

The Windows NT file system (NTFS)

provides a combination of performance,

reliability, and compatibility not found in
the FAT file system. It is designed to

quickly perform standard file operations
such as read, write, and search - and even

advanced operations such as file-system
recovery - on very large hard disks.

Formatting a volume with the NTFS file

system results in the creation of several
system (metadata) files such as $MFT -

Master File Table, $Bitmap, $LogFile and
others, which contains information about

all the files and folders on the NTFS

volume.

The first information on an NTFS volume is

the Partition Boot Sector ($Boot metadata

file), which starts at sector 0 and can be
up to 16 sectors long. This file describes

the basic NTFS volume information and a
location of the main metadata file - $MFT.

The following figure illustrates the layout

of an NTFS volume when formatting has
finished.

Figure 5-1 Formatted NTFS Volume

What's New in NTFS ver. 3.0

Encryption The Encrypting File System

(EFS) provides the core file encryption

technology used to store encrypted files
on NTFS volumes. EFS keeps files safe

from intruders who might gain
unauthorized physical access to sensitive,

stored data.

Disk Quotas Windows 2000 supports
disk quotas for NTFS volumes. You can

use disk quotas to monitor and limit disk-
space use.

Reparse Points Reparse points are

new file system objects in NTFS that can
be applied to NTFS files or folders. A file or

folder that contains a reparse point

acquires additional behavior not present in
the underlying file system. Reparse points

are used by many of the new storage
features in Windows 2000, including

volume mount points.

Volume Mount Points Volume mount
points are new to NTFS. Based on reparse

points, volume mount points allow
administrators to graft access to the root

of one local volume onto the folder
structure of another local volume.

Sparse Files Sparse files allow

programs to create very large files but
consume disk space only as needed.

Distributed Link Tracking NTFS

provides a link-tracking service that
maintains the integrity of shortcuts to files

as well as OLE links within compound

documents.

so the bad sector is not reused.

The Ext4 Linux file system

by Dr. Oliver Diedrich
Ext3, the default Linux file system for many

years, is definitely starting to show its age.

Modern mass storage devices are approaching

its limits and block-based data management is

no longer adequate for modern file sizes. High

time for an update!

Appeared in c't 10/09, p. 180

In the face of rapidly rising data volumes, it is

increasingly clear that Ext3, the current default

Linux file system, is reaching its limits. A maximum

file system, and thus volume size, of 16 TB can

already be a tight squeeze for large RAID arrays;

Ext3's 32-bit block numbers and 4 KB data blocks

mean, however, that there's no way around this

limit. A major refurbishment is therefore due.

Development of Ext4 started in 2006 with two

changes to the Ext3 file system: block number size

was increased to 48 bits and indirect block

addressing – in which the data blocks making up a

file are stored in a long list made up of individual

block numbers – was replaced by extents,

consisting of ranges of data blocks. Because this

involved changing the structure of the data stored

on the disk, the programmers decided that rather

than introducing these patches into Ext3, it was

Compiled by Shiba R. Tamrakar

2

time to create a new version of the file system –

Ext4 – based on the Ext3 code.

Extents map parts of a file to areas on the hard drive
The result of three years of Ext4 development has

been significant advances from Ext3 which

increase the volume limit to 1024 PB. This should

be sufficient for many years to come. Extents, long

implemented in other file systems such as XFS,

should improve the efficiency of managing large

files. There are also a whole range of under-the-

bonnet changes intended to improve Ext4

performance compared to Ext3.

The kernel development team adopted the Ext4

code in version 2.6.19 to give it the opportunity to

come to maturity in the kernel. Ext4 was marked

as experimental in versions up to and including

2.6.27, but since Linux 2.6.28 the new file system

is now considered stable. Not that this rules out

the odd bug or other unpleasant surprise. The

latest Ubuntu 9.04[1] can already be installed on

Ext4 and the forthcoming Fedora 11 release will

use Ext4 as its default file system.

Large volumes
Ext4 works with 48-bit block numbers, whilst the

default block size remains 4 KB. This allows file

system sizes composed of up to 2
48

 4 KB blocks –

equivalent to an exabyte (1024 PB) – compared to

the 16 TB maximum in Ext3. Why not go straight to

64-bit block numbers? An article[2] by the

development team offers a very pragmatic reason:

1 EB is going to be more than enough storage for

a very long time – indeed a complete e2fsck run

on a file system of this size would (on current

hardware) take more than 100 years. Before we

even begin to approach this limit, a whole other set

of problems, which will necessitate much more

substantial file system changes than 64-bit block

numbers, will need to be addressed. Plus there's

also the fact that 48-bit block numbers fit better

into the old Ext3 data structure.

According to Ext4 head developer Ted T'so,

extending block numbers to 64 bits shouldn't be

too big a deal, and may even be tackled during

ongoing Ext4 development. Indeed some

structures, such as super-blocks, block group

descriptors and the new JBD2 journaling layer –

developed in tandem with Ext4 – are already set

up for 64-bit block numbers.

The i_blocks value in the inode, which records the

number of blocks occupied by a file and in Ext3 is

32 bits long, has been adapted to the larger block

numbers in two ways. Firstly, it no longer counts in

terms of 512 byte hard drive sectors (as was the

case in Ext3), but instead counts in terms of the

file system's block size – generally 4 KB. A flag in

the inode indicates how this value should be

interpreted, something which is very important

when upgrading from Ext3 to Ext4, where old Ext3

inodes which count by sector may still be present.

Secondly, two previously unused bytes in the

inode are now used to store the high 16 bits of the

48-bit block number. The file system

feature huge_file indicates that the file system

is working with 48-bit block numbers and that

inodes can count in file system blocks. Despite 48-

bit block numbers, individual files cannot at

present be larger than 16 TB, as the current

extents structure does not allow management of

larger files (on which more below).

Of the other file systems in the kernel, the main

competitor to Ext4 is XFS – IBM's JFS has to date

failed to find many fans within the Linux community

and Reiser4 has still not been integrated into the

kernel. In expounding the advantages over XFS,

Ext4 developers cite the leaner code base (around

30,000 lines totalling 900 KB, compared to

100,000 lines totalling 3.2 MB for XFS), the ability

to convert an Ext3 file system to Ext4 and the large

proportion of code imported from the mature and

extremely well-tested Ext3.

Linux file systems

File
system

Maximum file
size

Maximum file
system size

Ext4 16 Tbyte 1024 Pbyte

Ext3 2 Tbyte 16 Tbyte

Reference:

http://www.h-online.com/open/features/The-Ext4-

Linux-file-system-746579.html

THE FAT FILE SYSTEMS. FAT32

FAT16 FAT12

The File Allocation Table (FAT) file system
is a simple file system originally designed

for small disks and simple folder

Compiled by Shiba R. Tamrakar

3

structures. The FAT file system is named

for its method of organization, the file
allocation table, which resides at the

beginning of the volume. To protect the
volume, two copies of the table are kept,

in case one becomes damaged. In
addition, the file allocation tables and the

root folder must be stored in a fixed
location so that the files needed to start

the system can be correctly located.

A volume formatted with the FAT file
system is allocated in clusters. The default

cluster size is determined by the size of

the volume. For the FAT file system, the
cluster number must fit in 16 bits and

must be a power of two.

Structure of a FAT Volume

The figure below illustrates how the FAT

file system organizes a volume.

Figure 4-1

File System Specifications

FAT32 is a derivative of the File Allocation

Table (FAT) file system that supports
drives with over 2GB of storage. Because

FAT32 drives can contain more than

65,526 clusters, smaller clusters are used
than on large FAT16 drives. This method

results in more efficient space allocation
on the FAT32 drive.

The largest possible file for a FAT32 drive

is 4GB minus 2 bytes.

The FAT32 file system includes four bytes
per cluster within the file allocation table.

Note that the high 4 bits of the 32-bit
values in the FAT32 file allocation table

are reserved and are not part of the
cluster number.

Reference:

http://www.ntfs.com/fat-systems.htm

WinFS Overview

WinFS is the code name of a Windows

storage subsystem, being developed by
Microsoft for use on its future Windows (c)

Operating System. WinFS is a relational
database located on NTFS and

representing itself to the operating system
as a file storage subsystem. The

codename WinFS stands for Windows
Future Storage.

WinFS intends to link the worlds of

traditional relational databases, objects,
XML, and file systems of unstructured

documents with the concept of metadata

over files. Instead of representing a file
solely by directory path and filename,

WinFS represents individual domain
objects - e.g. images, e-mails, address

book entries, and any kind of regular file -
with indexed and searchable context and

keyword information.

The underlying system is based on
Microsoft SQL Server (c) database engine.

WinFS provides access to data through
both traditional file-based APIs, and new

object-based approaches that take

advantage of the new features.
Applications that are not written to take

advantage of WinFS can access the
contents of a WinFS Store through a

regular UNC path.

Why WinFS?

A traditional file system, such as FAT or
NTFS, has its contents organized in a

hierarchal directory structure and is
relatively slow in searching the content by

particular attributes. If you organize your
pictures in folders “by Dates” – there

would be no way to access them “by
Persons”, “by Events” etc… You are to use

third party custom software like Adobe

PhotoAlbum (c) to perform this task.

WinFS overcomes the hierarchy and

"flattens" the storage of individual files

(i.e. there is no "hierarchy" based on
directory and file names), and it enables

searching for items by their attributes (like
date the photograph was taken, who or

what is in the picture, what camera was
used to take the picture, etc).

http://www.ntfs.com/fat-systems.htm

