Lab on Partitioning with fdisk

For detail Reference: http://tldp.org/HOWTO/Partition/fdisk partitioning.html

Please Note This is the lab sheet for quick reference to basic commands. Please Do study, RHCE course book or any "Redhat/Fedora system and network administration book" for detail. If you are now to Linux view the RHCE or other books related to Redhat Linux or web sites I have provided.

- Linux allows only 4 primary partitions. .
- You can have a much larger number of logical partitions by sub-dividing one of the primary partitions. Only one of the primary partitions can be sub-divided.
- fdisk utility only support 16 partitions, if you have to create more than 16 user other partition utilities like sfdisk.
 - /dev/had for primary master /dev/hdb for primary slave /dev/hdc for secondary master
 - /dev/hdd for secondary slave

fdisk is started by typing (as root) fdisk device at the command prompt. Device Lmight be something like /dev/hda or /dev/sda

- The basic fdisk commands you need are:
 - p print the partition table
 - n create a new partition
 - d delete a partition
 - q quit without saving changes
 - w write the new partition table and exit
- Changes you make to the partition table do not take effect until you issue the write • (w) command.
- To make change take effect type after write (w) without rebooting type: #parttptobe

Four primary partitions

- Decide on the size of your swap space and where it ought to go
- Divide up the remaining space for the three other partitions.
- Example:

I start fdisk from the shell prompt:

fdisk /dev/hdb

```
Command (m for help): p
       Disk /dev/hdb: 64 heads, 63 sectors, 621 cylinders
       Units = cylinders of 4032 * 512 bytes
```

To create new partition:

Command (m for help): n

Command action

```
e extended
```

n

p primary partition (1-4)

Type p for primary partition

```
Partition number (1-4): 1
```

First cylinder (1-621, default 1):<RETURN>

```
Using default value 1
```

Last cylinder or +size or +sizeM or +sizeK (1-621, default 621): +384M

```
Next, I set up the partition I want to use for swap:
Command (m for help): n
Command action
 e extended
```

```
primary partition (1-4)
р
```

```
Department of Continuing education, Kantipur City College
```

Partition number (1-4): 2 First cylinder (197-621, default 197):<RETURN> Using default value 197 Last cylinder or +size or +sizeM or +sizeK (197-621, default 621): +128M

Now the partition table looks like this: Device Boot Start End Blocks Id System /dev/hdb1 1 196 395104 83 Linux /dev/hdb2 197 262 133056 83 Linux

I set up the remaining two partitions the same way I did the first. Finally, I make the first partition bootable:

Command (m for help): a Partition number (1-4): 1

And I make the second partition of type swap: Command (m for help): t Partition number (1-4): 2 Hex code (type L to list codes): 82 Changed system type of partition 2 to 82 (Linux swap) Command (m for help): p

The end result: Disk /dev/hdb: 64 heads, 63 sectors, 621 cylinders Units = cylinders of 4032 * 512 bytes

Device Boot	Start	End	Blocks	Id S	fystem
/dev/hdb1 *	1	196	395104+	83	Linux
/dev/hdb2	197	262	133056	82	Linux swap
/dev/hdb3	263	458	395136	83	Linux
/dev/hdb4	459	621	328608	83	Linux

Finally, I issue the write command (w) to write the table on the disk.

To make change take effect without rebooting #partprobe Note we can similarly create logical partition and LVM partition by changing type to '8e' and RAID partition by changing partition type to 'fd'

Lab on system administration Printer Cups

- Configuring and using printer
- Configuration files: /etc/cups/cupsd.conf /etc/cups/printers.conf
- Command to configure printer #system-configure-printer
- Web interface for configuration
 <u>http://localhost:631</u>
- To authenticate user must be the member of system Group (sys by default) listed in / etc/cupscupsd.conf
- To spool jobs to a queue : #reject #acccept

Cron

- It is used to schedule recurring events
- Use crontab to edit, install and view job schedules

Department of Continuing education, Kantipur City College

Syntax:

crontab [-u user] file crontab [-l:-r]-e]

- -l lists crontab jobs
- -r remove crontab
- -e edits crontab jobs using \$EDITOR

Note

- cron jobs are stored in /var/spool/cron
- daemon for crontab: crond

Valid fields

Minute	Hour	Day of Month	Month	Day of week
0-59	0-23	1-31	1-12 or jan, Feb	0 or $7 = $ Sunday,1=Monday,

- Multiple values may be separated by commas
- * indicates all valid values
- For further help:
 - #man 5 crontab
- Controlling access to cron
 List of users to be allowed or denied will be listed in following files
 /etc/cron.allow
 and /etc/cron.deny respectively.

Examples

- 1. Cron job which will run du -h and saves output to out1 in every minute. #cat > mycronjob
 - 1 * * *
 - * du -h >>myoutputfile

#crontab mycronjob

2. Cron job which will run du -h and saves output to out1 in every 1^{st} minute of hour alternating in 2 hours.

#cat > mycronjob
 1 */2 * * du -h >>myoutputfile
#crontab mycronjob

3. Cron job to do task in every 1st day of 4th week of the month on time of 5:00 PM #crontab -e

0 17 1 */4 * ls -l >>output1

To execute script files in a particular directory called /etc/rc.d/htb #vi /etc/crontab

> path=<...path in the file currently>:/etc/rc.d/htb 0 17 1 * root run-parts /etc/rc.d/htb

#timewarch 48 /home/d1

tmpwatch

 Any file with create time or touch time >= 48 hours /etc/cron.daily/tmpwatch

System logging

- To start system logging #service syslog start
- Configuration file
 - /etc/syslog.conf
- Information files /var/log/messages contains all log inforation /var/log/dmesg contains kernel related logs

Department of Continuing education, Kantipur City College

/var/log/mail contains mail realated logs and so on.

- Format of log: Date/time:application [PID] messages
- Configure remote log server [how to configure remote log server]

Backup and Restore, compression

- Compression tools
- gzip, gunzip
- bzip2, bunzip2
- compres, uncopress
- zip, unzip

To compress temp.txt file with gzip # gzip -v temp.txt To compress temp.txt with bzip2 #bzip -v temp.txt Archiving #tar [option] <file-to-be archive> Creating archives arch.tar of files file1, file2 and file3 #tar cvf arch.tar file1 file2 file3 To view content of tar #tar tvf arch.tar To extract filex from archive #tar xvf arch.tar To create archive with compression with bzip2 #tar cjvf xyz.tar.bz2 file1 file2 file3 To extract archive with compression bzip2 #tar jvfx xyz.tar.bz2 To create archive with compression with gzip #tar czvf xyz.tar.gz file1 file2 file3 To extract archive with compression bzip2 #tar zvfx xyz.tar.bz2

Controlling Tape devices

#mt -f /dev/st0 rewind	(Rewind)
#mt –f /dev/st0 sf 50	(Position)
#mt -f /dev/st0 offline	(Eject)
#mt -f /dev/st0 erase	(Erase)
#mt –f /dev/st0 rewoff	(rewind,eject)

Using tar/star

Parameters for tar

- c create
- t list
- x extract
- v verbose
- j bzip2 compression
- z gzip compression

Example:

- 1. To backup a file or directory to SCSI tape
- #tar cf /dev/st0 file_or_dir
 2. Tar with compression
- _#tar cfz /dev/st0 file_or_dir
- 3. To extract a compressed archive, use: #tar zxf /dev/st0

Department of Continuing education, Kantipur City College

Preparem By: Shiba Ratna Tamrakar

Using dump and restore

To backup /home directory actually mounted directory of partition /dev/hda8 #dump -0u -f /myarchive /dev/hda8 Or #dump -0u -f /myarchive /home

Dump dates is stored in /etc/dumpdates

-u options update dump date in the file.

Creating Incremental backup

In incremental backup, inly new and updated files/directory are backuped 1st increment to above backup #dump -1u -f /myarchive1 /home 2nd rement backup #dump -1u -f /myarchive1 /home

Different backup

Now if we create -1 backup after creating -2, it will create backup of difference between 0 and 2. So it is called different backup #dump -1u -f /diffbackup /home

To restore files

#restore -rf /diffbackup

To restore in interactive mode

#restore -if /myarchive1
restore>help
restore>ls
restore>cd to directory

To add files to extracting list

restore> add filename To extract files restore>Extract

Lab on Advanced file system RAID

Basic steps

- 1. Creating partition of type fd
- 2. Use mdadm command lin utility to create RAID device of level 0, 1 or 5
- 3. Format RAID device /dev/md0 or md1
- 4. Mount the RAID device and edit /etc/fstab

Example

- 1. Fdisk /dev/had
 - a. n for netw partition
 - b. I for logical
 - c. do as instruction to choose default cylinder and size
 - d. type t to chande type of the device
 - e. choose filesystem and filesystem type to fd
- 2. mdadm -create /dev/md0 -chunk=64 -level=5 -raid-devices=3
 - /dev/had{10,11,12} -spare-devices=1 /dev/hda13
- 3. mke2fs -t ext3 /dev/md0
- 4. mount /dev/md0 /myRAIDdevice

To view the current RAID status

#cat /proc/mdstat

Or

#mdadm -detail /dev/md0

To remove a disk (/dev/hda12) from RAID array #mdadm -remove /dev/md0 /dev/hda12

To add new disk in RAID

- 1. create new drive of partition type fd (say /dev/hda14)
- 2. mdadm -add /dev/md0 /dev/hda14

Remove RAID device:

- 1. #unmount the /dev/md0
- 2. #mdadm -stop /dev/md0
- 3. Delete all partitions used by md0

Logical Volume Manager (LVM)

- 1. Create a partition of 83 (say partitions /dev/had{10,11,12,13}
- 2. To create physical volume
 - #pvcreate /dev/had{10,11,12,13}
- 3. To display physical volume
 - #pvdisplay /dev/hda10
- 4. To creat volume group
 - #vgcreate lvmtest0 /dev/had{10,11,12,13}
- To display volume group #vgdisplay lvmtest0
 For status -s option #vgdisplay -s lvmtest0
- 6. To create logical volume named data0 #lvcreate -L 28M -n data0 lvmtest0
- To display logical volume #vgdisplay
- 8. Mkfs.ext3 /dev/lvmtest0/data0

To extend logical volume if free space exist.

#lvextend -L +12M /dev/lvmtest0/data0

To make change take in effect without rebooting other wise not shown by mount command.

#ext2online /dev/lvmtest0/data0

To reduce logical volume

#umount /dev/lvmtest0/data0
#lvreduce -L 12M /dev/lvmtest0/data0
#mount /dev/lvmtest0/data0 /mount_point

To extend or reduce Volume Group Setps

- 1. Create partition of type 8e
- 2. #pvcreate /dev/hda14 (say we create hda14 partition of 83)
- 3. #vgextend lvmtest0 /dev/hda14
- 4. #vgdisplay lvmtest0
- To reduce logical Group To move data of disk which be being removed to other #pvmove /dev/hda12 #vgreduce lvmtest0 /dev/hda12

Removing LVM (logical Group)

- 1. Remove lines if exist in /etc/fstab for mouting
- 2. Umount LVM drive
- 3. #lvremove /dev/lvmtest0/dat{0,1}
- 4. #vgcreate -a n lvmtest0
- 5. #vgremove lvmtest0

User Quota #vi /etc/fstab LABEL=/home /home ext3 defaults,usrquota 0 0 #touch /home/aquota.user #mount -o remount,rw /home #quotacheck -cfm /home #quotaon /home #edquota shiba #quota or #repquota