
Prepared By: Shiba R. Tamrakar Copy() left

Chapter 3 (AWT and Swing)

(Note: This document is dedicated for BE Computer 7th Sem. or BCA 5th Sem., so it is
assumed that the already have knowledge what is GUI Programming. Further discussion
on the example will be in class)

• AWT and Swing are two different classed used for develop GUI interfaces.
• All the part of GUI window are objects
• Every GUI is composed of three parts:
o The Interface (actual windows)
o The Engine (the underlying functionality of an application)
o The Listener (the connection between the interface and the engine.)

AWT

AWT stands for "Abstract Windowing Toolkit". It's main purpose is to provide the Java
programmer the means needed to generate the UI (User Interface) for their application
which will communicate with the user. The Abstract Window toolkit (AWT) contains
numerous classes and methods that allow us to create and manage windows. It is used to
support Applet window as well as GUI environment such as window. The AWT must reach
into the GUI components of the native OS, which means that it performs a task that an
applet cannot otherwise accomplish. An untrusted applet cannot make any direct calls
into an OS because otherwise it could do bad things to the user’s machine. The only way
an untrusted applet can access important functionality such as “draw a window on the
screen” is through calls in the standard Java library that’s been specially ported and
safety checked for that machine.

Swing

Swing is a set of classes that provides more powerful and flexible components that are
possible with the AWT.

Benefits of Swing

• Swing components are Beans (and thus use the Java 1.1 event model), so they can
be used in any development environment that supports Beans.

• Swing provides a full set of UI components.
• For speed, all the components are lightweight (no “peer” components are used),

BE Computer 7th/BCA 5th (Advance Programming) 1
http://www.shiba.com.np/java/javaGUI.pdf

Listener

Interface Engine

Update
action

Upate to
Windows
values

Return
values

Method Call

Fig: Working Model of GUI programming in Java

Prepared By: Shiba R. Tamrakar Copy() left

• Swing is written entirely in Java for portability.
• Keyboard navigation is automatic – you can use a Swing application without the

mouse, but you don’t have to do any extra programming (the old AWT required some
ugly code to achieve keyboard navigation).

• Scrolling support is effortless – you simply wrap your component in a JScrollPane
as you add it to your form.

• Other features such as tool tips typically require a single line of code to
implement.

• Swing also supports something called “pluggable look and feel,” which means that
the appearance of the UI can be dynamically changed to suit the expectations of users
working under different platforms and operating systems. It’s even possible to invent
your own look and feel.

• If you’ve struggled long and hard to build your UI using Java 1.1, you don’t want to
throw it away to convert to Swing. Fortunately, the library is designed to allow easy
conversion – in many cases you can simply put a ‘J’ in front of the class names of each
of your old AWT components.

Difference between AWT and Swing

AWT Swing
• It have to use OS peer for each

components
• We would have only one peer, the

operating system's window object. All
of the buttons, entry fields, etc. are
drawn by the Swing package on the
drawing surface provided by the
window object.

• It consist of less code but
programmer have to code extensively

• Swing has more code and program
don’t have to code extensively

• AWT is a thin layer of code on top
of the OS, whereas Swing is much
larger

• Swing is much larger

• It has less functionalities • Swing also has very much richer
functionality

• It is called Heavy weight
programming because all the
components have their peer in OS.

• Swing components are called
"lightweight" because they do not
require a native OS object to
implement their functionality.

• JDialog and JFrame are
heavyweight, because they do have a
peer. So components like JButton,
JTextArea, etc., are lightweight
because they do not have an OS peer.

• For GUI-intensive work, AWT feels
very primitive to work with compared
to Swing

• Because Swing implements GUI
functionality itself rather than relying
on the host OS, it can offer a richer
environment on all platforms Java
runs on.

• AWT is more limited in supplying
the same functionality on all
platforms because not all platforms
implement the same-looking controls
in the same ways.

• Swing us platform independent so
it in not limited in supplying the same
functionality on all platforms.

• It has their own viewport which
sends the output to the screen

• It does not write itself to the
screen but redirect it to the
component it builds on

BE Computer 7th/BCA 5th (Advance Programming) 2
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

• Its components also have their
own z-ordering.

• Its components don’t have z-
ordering

• AWT and Swing in the same
container. If you do, AWT will always
be drawn on top of the Swing
components.

• AWT and Swing in the same
container. If you do, Swing will always
be drawn on Below the Swing
components.

• Its components are dependent to
OS, so its appearance changes in
different platform

• Its components are not dependent
to OS, so its appearance remains
same in all the platforms

• AWT supports Ctrl-C Ctrl-V
copy/paste without any coding.

• In Swing, it requires page and
pages of bubblegum. Further you
can't do it at all in unsigned Swing
JApplets.

• AWT is supported in older version
of JVMs also.

• Swing is bigger and more
complicated, and is not supported by
earlier JVMs.

• With AWT you must not deal with
the irritatingly pointless complexity of
ContentPanes.

• With Swing you must deal with the
irritatingly pointless complexity of
ContentPanes.

• They are faster in operation
because it uses OS components

• They are slower because they
have to draw all components them
self

• There are no equivalents in AWT. • Swing has JSpinner, JSlider and
JColorChooser.

Similarities between AWT and Swing

• There are no big architectural differences; the class hierarchy is almost the same.
The reason is that

o Swing is built upon AWT.
• Both AWT and Swing are used for GUI and window programming.

Fig: AWT Class Hierarchy

BE Computer 7th/BCA 5th (Advance Programming) 3
http://www.shiba.com.np/java/javaGUI.pdf

http://mindprod.com/jgloss/contentpane.html
http://mindprod.com/jgloss/contentpane.html

Prepared By: Shiba R. Tamrakar Copy() left

Fig: Swing Class Hierarchy

GUI Design Strategy
1. Identified Needed Components
2. Isolate regions of behavior
3. Sketch the GUI
4. Choose Layout Manager

Common Methods
• getSize() and setSize()
• getLocation() and setLocation()
• setVisible()
• setEnabled()
• setFont()
Basic swing Components
• Swing component classes can be found in javax.swing package.
• The component class name all begins with J.
• AWT and Swing components should not be combined.
• Non component object of AWT can be combined with Swing.
• Swing components are sub classes of java.awt.Container.
Type of Components
• Container Components (Applet, JFrame, JDialog)
• Ordinary Components or Atomic Components (JButton, JLabel etc.)
• Menu Components (Not included in course)

Container Component

• It can contain other components including other containers

BE Computer 7th/BCA 5th (Advance Programming) 4
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

• It uses layout managers for determining the size and position of child components.
JFrame
o Independent movable window.
o An application can contain 1 or more.
o Sample
public static void main(String[] args)
{

JFrame f= new JFrame(“Demo”);
f.setSize(300,400);
f.setVisible(true);

}

Note: pack() method resizes the frame to fit it's content and choose appropriate Layout
manager.
Example
public static void main(String args[])
{

JFrame f = new JFrame (“demo”);
f.setSize(300,250);
Container c = f.getContentPane();
c.setLayout(new FlowLayout());
c.add(new JButton(“#1”));
c.add(new JButton(“#2”));
f.setVisible(true);

}
JPanel
o In above example the Layout manager manages layout of container instead

of JFrame.
o Blank rectangular component that can contain other components.
o Each panel uses a separate layout manager.
o By default JPanel used FlowLayout manager.
o Example
public static void main(String args[])
{

JFrame f = new JFrame(“Cantent pane”);
f.setSize(350,250);
Container c=f.getContentPane();
c.setLayout(new GridLayout(2,1));
JPanel p= new JPanel();
p.setBackground(Color.LightGray);
p.add(new JButton(“#1”));
p.add(new JButton(“#2”));
c.add(p);
p.setBackground(Color.LightGray);
p.add(new JButton(“#1”));
p.add(new JButton(“#2”));
c.add(p);
f.setVisible(true);

}

Ordinary (Atomic) Components

• JLabel
• JButton
• JCheckBox
• JRadioButton

BE Computer 7th/BCA 5th (Advance Programming) 5
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

• JTextField
• JTextArea
• JComboBox
• JScrollBar
JLabel
• Simplest component type which will display text and/or image.
• Do not respond to user imput and do not emit events.

public static void main(String args[])
{

JFrame f = new JFrame(“JLabel Demo”);
Container c = f.getContentPane();
c.setLayout(new FlowLayout());
c.add(new JLabel(“This is JLabel”);
f.setVisible(true);

}

JButton
• Implements simple push button.
• Can display text/icon or both.
• On user click, action events are sent to all registered Action listeners.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ButtonDemo extends JFrame
{

private JButton bntExit;
public static void main(String args[])

{
(new ButtonDemo()).setVisible(true);

}

ButtonDemo()
{

super(“Button Demo”);
setSize(350,250);
Container c=getContentPane();
c.setLayout(new FlowLayout());
btnExit=new JButten(“Exit”);
c.add(btnExit);

ButtonListener listener = new ButtonListener();
btnExit.addActionListener(listener);

}
class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

if(e.getSource() == bntExit)
System.out.println(“Hello”);

}
}
}

BE Computer 7th/BCA 5th (Advance Programming) 6
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

JCheckbox
• Implements a check box that can be selected or deselected.

import java.awt.*;
import javax.swing.*;
public class chkbxDemo{

public static void main(String[] args){
JFrame frame = new JFrame(“CheckBoxDemo”);
frame.setSize(300,200);
Container cont = frame.getContentPane();
cont.setLayout(new FlowLayout());
cont.add(new JCheckBox(“Apple”);
cont.add(new JCheckBox9(“Banana”);
cont.add(new Button(“Submit”);
frame.setVisible(true);

}
}
JRadioButton
• Implements a check box that can be selected or deselected.

import java.awt.*;
import javax.swing.*;
public class RadioDemo{
 public static void main(String[] args) {
 JFrame frame = new JFrame("Radio Demo");
 frame.setSize(350,250);
 Container cont = frame.getContentPane();
 cont.setLayout(new FlowLayout());
 ButtonGroup btnGroup = new ButtonGroup();

 JRadioButton rbtnP = new JRadioButton("Programmer",true);
 JRadioButton rbtnD = new JRadioButton("Designer");

btnGroup.add(rbtnP);
 btnGroup.add(rbtnD);

 cont.add(rbtnP);
 cont.add(rbtnD);

 frame.setVisible(true);
 }
}
JScrollBar
• Lets the user enter an adjustable pseudo-analog value.
• Can be organized horizontally or vertically.
o JScrollBar.HORIZONTAL
o JScrollBar.VERTICAL

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ScrollBarDemo extends JFrame{
 public static void main(String args[]){
 (new ScrollBarDemo()).setVisible(true);

BE Computer 7th/BCA 5th (Advance Programming) 7
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

}
ScrollBarDemo(){
 super("Scroll Bar Demo");
 setSize(350,250);
 Container cont = getContentPane();
 JScrollBar sbar = new JScrollBar(JScrollBar.HORIZONTAL);
 cont.add(sbar,BorderLayout.NORTH);

 BarListener listener = new BarListener();
 sbar.addAdjustmentListener(listener);
}
class BarListener implements AdjustmentListener{
 public void adjustmentValueChanged(AdjustmentEvent e){
 System.out.println("Val = " + e.getValue());
 }
}
}
JTextField and JTextArea
• Single line and multi-line text entry.
• Both are inherited javax.swing.text.JTextComponent.
• Both sends Key events when they receive keyboard input.
• In addition Action events occurs while pressed Enter.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TextDemo extends JFrame implements ActionListener, KeyListener{
 private JTextField field;
 private JTextArea area;
public static void main(String args[]){
 (new TextDemo()).setVisible(true);
 }

 TextDemo(){
 super("TextDemo");
 setSize(350,250);
 Container cont = getContentPane();

 field = new JTextField("Type here");
 field.addKeyListener(this);
 field.addActionListener(this);
 cont.add(field,BorderLayout.NORTH);

 area=new JTextArea();
 cont.add(area,BorderLayout.CENTER);
 }
public void keyPressed(KeyEvent e){
 System.out.println(e);
 }

 public void keyReleased(KeyEvent e){}

 public void keyTyped(KeyEvent e){
 area.append("Key: " + e.getKeyChar() + "'");
 }

BE Computer 7th/BCA 5th (Advance Programming) 8
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

 public void actionPerformed(ActionEvent e){
 area.append("Action: " + field.getText() + "'");

 }
}
JComboBox
ComboDemo()
 {
 super("ComboDemo");
 setSize(350,250);
 Container cont = getContentPane();
 cont.setLayout(new FlowLayout());

 String[] initialVals = {"BCA","BE Comp","BIT"};
 JComboBox combo = new JComboBox(initialVals);
 combo.setEditable(true);
 cont.add(combo);
 }
}

Layout Management

• A layout manager determines the location and size of components placed into a
container.

• Different layout manager classes use different algorithms for determining size and
location.

• The only layout manager methods that are normally used are constructors.
• In Java we normally do not manually manage layout, because there are two main

reasons
o It is very tedious to manually layout a large number of components.
o Sometimes the width and height information is not yet available when we

need to arrange some control, because it is pretty confusing to figure out when it is
okay to use the size of a given component to position it relative to another.

• A layout manager is an instance of any class that implements the
LayoutManager interface.

• If no call to setLayout() is made, then the default layout manager is used.
• Whenever a container is resized (or sized for the first time), the layout manager is

used to position each of the components within it.

The setLayout() method has the following general form:

Void setLayout(LayoutManager layoutObj)

o Here, layoutObj is a reference to the desired layout manager.
o If we wish to disable the layout manager and position components

manually, pass null for layoutObj.
o In this case, we have to determine the shape and size of each component

manually, using the setBounds().

• Each component that is being managed by a layout manager contains the
getPreferredSize() and getMinimumSize() methods.

BE Computer 7th/BCA 5th (Advance Programming) 9
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

• These return the preferred and minimum size required to display each component.

FlowLayout Class

• It places components in rows.
• Each component is given its preferred size. When a row has as many components

as can fit, a new row is started.
• This is the default layout manager for JPanel and Applet.
• Components are laid out from the upper-left corner, left to right and top to bottom.
• It uses the constructor to tune the behavior.

There are three useful constructors.

o new FlowLayout()
o new FlowLayout(int algn)
o new FlowLayout(int algn, int hgap, int vgap)

• The first form creates the default layout, which centers components and leaves
five pixels of space between each component.

• The second form lets us specify how each line is aligned.

FlowLayout.LEFT
FlowLayout.RIGHT
FlowLayout.CENTER

• The third form allows us to specify the horizontal and vertical space left between
components in hgap and vgap

Fig: Initial State of Applet.

Fig: After resize (decrease the width and increase the height)

BE Computer 7th/BCA 5th (Advance Programming) 10
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

BorderLayout Class

• It divides its container into three horizontal stripes:
o top (north),
o middle, and
o bottom (south).
• At most one component can be placed into the north or south.
• These components get their preferred height, but they take up the full width of the

container.
• The middle stripe gets whatever height is available after deducting the heights of

the north and south components.
• It can hold three components:
o one on the left (west),
o one in the middle (center), and
o one on the right (east).
• The east and west components get their preferred widths, but they take up the full

height of the middle stripe.
• This is the default layout manager for content panes (JFrame,JDialog,Window).
• There are two useful constructors.

o new BorderLayout()
o new BorderLayout(int hgap, int vgap)

• When components are added to a container that uses a BorderLayout, they should
be added with the following kind of statement.

 container.add(component, whr);

• The parameter whr should be one of the following.
o BorderLayout.NORTH
o BorderLayout.EAST
o BorderLayout.SOUTH
o BorderLayout.WEST
o BorderLayout.CENTER

Fig: Initial State Fig: resizing horizontally Fig: resizing vertically

BE Computer 7th/BCA 5th (Advance Programming) 11
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

GridLayout Class

• It places components in a rectangular grid whose cells all have the same size.
Each component is sized to fill the cell.

• There are two useful GridLayout constructors.
o new GridLayout(int rows, int cols)
o new GridLayout(int rows, int cols, int hgap, int vgap)

Fig:Initial State Fig: after resizing (in diagnol increase height and width both)

(Example already discussed above)

BoxLayout Class

• It places components into a single row or column, as specified by the second
constructor parameter.

• For a row (parameter value BoxLayout.X_AXIS), each component get its preferred
height.

• The widths are adjusted according to a formula that incorporates both preferred
and maximum widths.

• For a column (parameter value BoxLayout.Y_AXIS), each component gets its
preferred width.

• The heights are adjusted according to a formula that incorporates both preferred
and maximum heights.

o new BoxLayout(Component c, BoxLayout.X_AXIS)
o new BoxLayout(Component c, BoxLayout.Y_AXIS)

BE Computer 7th/BCA 5th (Advance Programming) 12
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

Fig: XboxLayout Fig: yBoxlayout

CardLayout

• It is unique among the other layout managers in that it stores several different
layouts.

• Each layout can be thought of as being on a separate index card in a deck that can
be shuffled so that any card is on top at a given time.

• This can be useful for user interfaces with optional components that can be
dynamically enabled and disabled upon user input.

• We can prepare the other layouts and have them hidden, ready to be activated
when needed.

o CardLayout provides these two constructors:

CardLayout()
CardLayout(int horz, int vert)

• The first form creates a default card layout.
• The second form allows us to specify the horizontal and vertical space left

between components in horz and vert, respectively.
• Use of a card layout requires a bit more work than the other layouts.
• The cards are typically held in an object of type Panel.
• This panel must have CardLayout selected as its layout manager.
• The cards that form the deck are also typically objects of type Pane.
• Thus we must create a panel that contains the deck and a panel for each chard in

the deck.
• Next, we add to the appropriate panel the components that form each card.
• We then add panel to the main applet panel.
• Once these steps are complete, we must provide some way for the user to select

between cards.
• Once these steps are complete, we must provide some button for each card in the

deck.
• When card panels are added to a panel, they are usually given a name.

GridBagLayout

• GridBagLayout is the most sophisticated, flexible layout manager the Java platform
provides.

BE Computer 7th/BCA 5th (Advance Programming) 13
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

• Grid bag layouts are the most complex and most flexible of the AWT layouts,
letting you specify more exactly than any of the other AWT layout managers where
you want your components to go.

Assignment:

Write programs to demonstrate GridBagLayout and CardLayout.

Hints:
Students should be familier with AWT, Swing, JFrame, JPanel, JTextField, JLabel,
JCheckBox, JRadioButton and JTextArea along with event handling.

In Layout Management students should practice on FlowLayout, GridLayout, BorderLayout
and combination

Extra Stuff (not in Syllabus)

JMenu
• Allow the programmer to organize Swing components in menus.
• JMenuBar component implements a menu bar that occupies the top portion of a

JFrame and can contain drop-down menus.
• JFrame calls setJMenuBar(theMenuBar) to insert menu.
• to populate a menu bar, construct a number of instances of JMenu and install them

in the menu bar by calling the theMenuBar.add(theMenu).
• The JMenu constructor takes as an argument the string that will appear on the

menu bar.
• Example
//MenuDemo.java
// Title : MenuDemo.java - Simple demo of building menus.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class MenuDemo {
 public static void main(String[] args) {
 JFrame win = new MenuDemoGUI();
 win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 win.setVisible(true);
 }
}
//MenuDemoGUI
class MenuDemoGUI extends JFrame {
 JTextArea m_editArea = new JTextArea(20, 50);

// declare and create new menu
 JMenu m_fileMenu = new JMenu("File");

// create new menu item
JMenuItem m_openItem = new JMenuItem("Open");
//another menu item
JMenuItem m_quitItem = new JMenuItem("Quit");

 JMenu m_editMenu = new JMenu("Edit");
 JMenuItem m_copyItem = new JMenuItem("Copy");
 JMenuItem m_pasteItem= new JMenuItem("Paste");

BE Computer 7th/BCA 5th (Advance Programming) 14
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

//constructor
 public MenuDemoGUI() {
 //... Add listeners to menu items
 m_openItem.addActionListener(new OpenAction());
 m_quitItem.addActionListener(new QuitAction());

 JMenuBar menubar = new JMenuBar(); // declare and create new menu bar
 menubar.add(m_fileMenu);

m_fileMenu.add(m_openItem);
m_fileMenu.addSeparator(); // add separator line to menu
m_fileMenu.add(m_quitItem);
menubar.add(m_editMenu);

 m_editMenu.add(m_copyItem);
 m_editMenu.add(m_pasteItem);
//... Content pane: create, layout, add components
 JPanel content = new JPanel();
 content.setLayout(new BorderLayout());
 content.add(m_editArea, BorderLayout.CENTER);

 //... Set JFrame's menubar, content pane, and title.
 this.setContentPane(content); // Set windows content pane..
 this.setJMenuBar(menubar); // Set windows menubar.
 this.pack();
 this.setTitle("MenuDemo");
 }//endconstructor

//// OpenAction
 class OpenAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Sorry, can't open anything");
 }
 }

/// QuitAction
 class QuitAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0); // terminate this program
 }
 }
}

Example of uing JTable
import java.awt.event.WindowAdapter;

BE Computer 7th/BCA 5th (Advance Programming) 15
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

import java.awt.event.WindowEvent;
import javax.swing.*;

public class jTableEx extends JFrame
{
 String data[][]={{"Shiba","Bagbazar","BCA Honors"},{"Roshan","BE Elec and
e","Lazimpat"}};

 String fields[]={"Name","Address","Education"};

 public static void main(String[] args)
 {
 jTableEx myEx = new jTableEx("JTAble Example");
 }

 public jTableEx(String title)
 {
 super (title);
 setSize(150,150);
 addWindowListener (new WindowAdapter()
 { public void windowClosing(WindowEvent we){
 dispose();
 System.exit(0);
 }
 });
 init();
 pack();
 setVisible (true);

 }
 private void init()
 {
 JTable jt = new JTable (data,fields);
 JScrollPane pane = new JScrollPane (jt);
 getContentPane().add(pane);
 }
}

Example of JList
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JListEx extends JFrame
{
 private DefaultListModel nameList;
 private JList list;

 public JListEx()
 {
 nameList = new DefaultListModel();
 nameList.addElement("Ramesh");
 nameList.addElement("Santosh");
 nameList.addElement("Prakash");

 list = new JList (nameList);

BE Computer 7th/BCA 5th (Advance Programming) 16
http://www.shiba.com.np/java/javaGUI.pdf

Prepared By: Shiba R. Tamrakar Copy() left

 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 //create JButton ("Add Name");
 JButton addButton = new JButton ("Add Name");
 addButton.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 //prompt user for name
 String name = JOptionPane.showInputDialog(JListEx.this,"Enter Name");

 //add new Name to model
 nameList.addElement(name);
 }
 });

 //create JButton for removing selected name
 JButton removeButton = new JButton("Remove Selected Name");

 removeButton.addActionListener(
 new ActionListener(){
 public void actionPerformed (ActionEvent event)
 {
 nameList.removeElement(list.getSelectedValue());
 }
 }
);

 //lay out GUI Components
 JPanel inputPanel = new JPanel();
 inputPanel.add(addButton);
 inputPanel.add(removeButton);

 Container container = getContentPane();
 container.add(list,BorderLayout.CENTER);
 container.add(inputPanel,BorderLayout.NORTH);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400,300);
 setVisible(true);
 } //end of JListEx constructor

 public static void main(String args[])
 {
 new JListEx();
 }
 }

BE Computer 7th/BCA 5th (Advance Programming) 17
http://www.shiba.com.np/java/javaGUI.pdf

	Chapter 3 (AWT and Swing)
	
	AWT
	Swing
	Benefits of Swing
	Difference between AWT and Swing
	Similarities between AWT and Swing
	Fig: AWT Class Hierarchy
	
	Fig: Swing Class Hierarchy
	Container Component
	Ordinary (Atomic) Components
	Layout Management
	FlowLayout Class
	BorderLayout Class
	GridLayout Class
	BoxLayout Class
	CardLayout
	GridBagLayout

