
Prepared By: Shiba R. Tamrakar

1

Note: It is assumed that the students have some basic knowledge of C and C++ so

some common keywords and other concepts are skipped (like loop, array etc if
required do refer to class room note).

What is Java?

 Java is a high-level, third generation programming language.

 Compared to other programming languages, Java is most similar to C. However
although Java shares much of C's syntax, it is not C. Knowing how to program in

C or, better yet, C++, will certainly help you to learn Java more quickly, but you
don't need to know C to learn Java. \

 Unlike C++ Java is not a superset of C. A Java compiler won't compile C code,

and most large C programs need to be changed substantially before they can
become Java programs.

 What's most special about Java in relation to other programming languages is
that it lets you write special programs called applets that can be downloaded

from the Internet and played safely within a web browser.
 A Java applet cannot write to your hard disk without your permission. It cannot

write to arbitrary addresses in memory and thereby introduce a virus into your
computer. It should not crash your system.

The ByteCode and JVM (Java Virtual Machine)

 An imaginary machine that is implemented by emulating software on a real
machine

 It provides the hardware platform specifications to which you compile all java
technology code.

 JVM is an interpreter for bytecode.
 Bytecode is a highly optimized set of instructions designed to be executed

by the Java run-time system i.e. Java Virtual Machine (JVM).
 Independent of any particular computer hardware, so any computer with a

java interpreter can execute the compiled java program, no matter what type

of computer program was compiled on.
 ByteCode and JVM are the key that allows java to solve both the security and

the portability problems.
 The reason is straightforward: only the JVM needs to be implemented for

each platform.
 The details of the JVM will differ from platform to platform, but all

interpret the same Java bytecode.
 The fact that a Java program is interpreted also helps to make it secure.

Because the execution of every Java program is under the control of the JVM,

the JVM can contain the program and prevent it from generating side effects
outside of the system.

 Safety is also enhanced by certain restrictions that exist in the Java language.
 When a program is interpreted, it generally runs substantially slower than

it would run if compiled to executable code.
 With Java, differential between the two is not so great.

 Although Java was designed for interpretation, there is technically nothing
about Java that prevents on-the-fly compilation of bytecode into native code.

 Just in Time (JIT)

o Sun supplies its Just In Time (JIT) compiler for bytecode, which is
included in the Java 2 release.

Prepared By: Shiba R. Tamrakar

2

o When the JIT compiler is part of the JVM, it compiles bytecode into

executable code in real time, on a piece-by-piece, demand basis.
o It is important to understand that it is not possible to compile an entire

Java program into executable code all at once, because Java
performs various run-time checks that can be done only at run time.

o Just-in-time approach still yields a significant performance boost.
o Even when dynamic compilation is applied to bytecode, the portability

and safety features still apply, because the run time system which
performs the compilation still is in charge of the execution environment.

Features of Java

 Architecture-Neutral

o A central issue for the Java designer was that of code longevity and

portability.
o Software Industry is rapidly changing s/w tools.

o JVM helps java to be run from one system to another.
o If the architecture of the Hardware or OS changes, only the JVM will be

changed and the current program will correctly.
 Distributed

o Java is designed for the distributed environment of the Internet, because
it handles TCP/IP protocols.

o RMI feature of Java helps the programmer to design distributed software.

 Dynamic
o Java programs carry with them substantial amount of run time type

information that is used to verify and resolve accesses to objects at run
time.

o This makes it possible to dynamically link code in a safe and convenient
manner.

 Interpreted and High Performance
o Java enables the creation of cross-platform programs by compiling into an

intermediate representation called Java bytecode.

o This code can be interpreted on any system that provides a JVM.
o Relative to other interrelated languages like BASIC and Perl Java

interpretation gives high performance.
 Multithreaded

o Java was designed to meet the real world requirement of creating
interactive, networked programs.

Java Source Code

Bytecode

JIT Compiler

Other Components
of JVM

Executable Code

Compiled

Pass to JVM

Interpreted or JIT
compilation

Fig.: Demonstration of JVM’s Functionality (Java2)

Filename.class

Prepared By: Shiba R. Tamrakar

3

o To accomplish this, Java supports multithreaded programming, which

allows us to write programs that do many things simultaneously.
 Object Oriented

o Java is purely object oriented language because any program created in
java must have class.

 Portable
o JVM feature in Java provides the portability facility.

o Even though every operating system has different architecture JVM
behaves as intermediate between Java bytecode and the OS.

 Robust

o The multi-plat formed environment of the web places extraordinary
demands on a program, because the program must execute reliably in a

variety of systems.
o Java can be used in multiple purpose software development

 Simple
o Java inherits the features of C and C++ so most of the coding in Java is

similar to C and C++
o If any one has some Idea on C and C++ then learning java is simple.

o Even though if you don’t know C and C++ you can learn Java easily

 Security
o Java also provides security up to some extents. Since all the programs of

Java runs under JVM, the program cannot do any side effect outside JVM.

First program in Java

//HelloWorld.java
class HelloWorld {

 public static void main (String args[]) {

 System.out.println("Hello World!");

 }

}
 The goal of this program is not to learn how to print words to the terminal. It's to

learn how to type, save and compile a program.
 To write the code you need a text editor. You can use any text editor like

Notepad, Brief, emacs or vi or notepad. Personally I use vi on Linux or
kawa,Textpad,editplus on Windows.

 You should not use a word processor like Microsoft Word or WordPerfect since

these save their files in a proprietary format and not in pure ASCII text. If you
absolutely must use one of these, be sure to tell it to save your files as pure text.

Generally this will require using Save As... rather than Save.
 When you've chosen your text editor, type or copy the above program into a new

file. For now type it exactly as it appears here. Like C and unlike Fortran, Java is
case sensitive so System.out.println is not the same as system.out.println.

CLASS is not the same as class, and so on.
 However, white space is not significant except inside string literals. The exact

number of spaces or tabs you use doesn't matter.

 Save this code in a file called HelloWorld.java.

Compiling and Running Hello World

 To make sure your Java environment is correctly configured, bring up a
command-line prompt and type

Prepared By: Shiba R. Tamrakar

4

javac null.java

 If your computer responds with

error: Can't read: null.java

 you're ready to begin. If, on the other hand, it responds

javac: Command not found

 or something similar, then you need make sure you have the Java environment

properly installed and your PATH configured.

 Assuming that Java is properly installed on your system there are three steps to
creating a Java program:

1. writing the code

2. compiling the code
3. running the code

 Under Unix, compiling and running the code looks like this:

$ javac HelloWorld.java
$ java HelloWorld

Hello World
$

 Under Windows, it's similar. You just do this in a DOS shell.
C:> javac HelloWorld.java

C:> java HelloWorld
Hello World

C:>

 Notice that you use the .java extension when compiling a file, but you do not use
the .class extension when running a file.

CLASSPATH Problems

 If you get any message like this,

$ java HelloWorld
Can't find class HelloWorld

 it probably means your CLASSPATH environment variable isn't properly set up.
Make sure it includes the current directory as well as the location where the

classes.zip file was installed. On Unix it should look something like this:

CLASSPATH=.:/usr/local/java-1.6/lib

 Under Windows it will probably look something like this

C:\JDK\JAVA\CLASSES;c:\java\lib\classes.zip

 Under Unix you set CLASSPATH variables like this:

csh: % setenv CLASSPATH my_class_path

sh: % CLASSPATH=my_class_path

Prepared By: Shiba R. Tamrakar

5

 You'll probably want to add one of these lines to your .login or .cshrc file so it will

be automatically set every time.
 Under Windows you set the CLASSPATH environment variable with a DOS

command like

C:\> SET CLASSPATH=C:\JDK\JAVA\CLASSES;c:\java\lib\classes.zip

 The CLASSPATH variable is also important when you run Java applets, not just

when you compile them. It tells the web browser or applet viewer where it should

look to find the referenced .class files. If the CLASSPATH is set improperly, you'll
probably see messages like "Applet could not start."

 If the CLASSPATH environment variable has not been set, and you do not specify
one on the command line, then Java sets the CLASSPATH to the default:

 Unix: .:$JAVA/classes:$JAVA/lib/classes.zip

 Windows: .:$JAVA\classes:$JAVA\lib\classes.zip
 Mac: ./$JAVA:classes/$JAVA:lib:classes.zip

 Here . is the current directory and $JAVA is the main Java directory where the

different tools like javac were installed.

String

 In Java a string is a sequence of characters as usual. But, unlike many other

languages that implement strings as character arrays, Java implements string
as objects of type String.

 Implementing string as built-in objects allows Java to provide a full
complement of features that make string handling convenient.

 For example, Java has methods to compare two strings, search for a
substring, concatenate two strings, and change the case of letters within a

string.

 Also, String objects can be constructed a number of ways, making it easy to
obtain a string when needed.

 When we create a String object, we are creating a string that cannot be
changed.

 Even though the characters contained cannot be changed, we can still
perform all types of string operations.

 The difference is that each time you need an altered version of an existing
string, a new String approach is used because fixed, immutable strings can be

implemented more efficiently that changeable ones.

 It is defined in java.lang. Thus, there are available to all class automatically.

Similarities between String and StringBuffer

 Both the String and String Buffer are the classes

 Both are defined in java.lang.
 Both are declared final, which means that neither of these classes may be

sub-classed.

String Constructors

String s=new String()

Prepared By: Shiba R. Tamrakar

6

String s=new String(char_array[])

String(char char_array[], int startIndex, int numChars)
String(String strObj)

String(byte asciiChars[])
String(byte asciiChars[], int startIndex, int numChars)

String Methods

length()

toString()
o By overriding toString() for classes that we create, we allow them to be

fully integrated into Java’s programming environment.

o If you have created toString() method in any class, and you call the
object without specifying any method of the class then toString() method

is automatically invoked.
Example

Box b=new Box(10);
System.out.println(b); //This line will print the string which will be

returned by toString() method of class b automatically.

Character Extraction

charAt(int where)

getChars(int sourceStart, int sourceEnd, char targer[], int targetStart)
Example

Class getCharsDemo
{

Public static void main(String args[])
{

String s=”This is a demo of the getChars method.”;
Int start=10;

Int end=14;

Char buf[]=new char[end-start];

s.getChars(start,end,buf,0);
System.out.println(buf);

}
}

getBytes()

o There is an alternative to get Chars() that stores the characters in an

array of bytes.
o It uses the default character to byte conversion provided by the platform.

byte[] getBytes()
toCharArray()

String comparison

equals()

o To compare two strings for equality.
boolean equals(Object str)

equalsIgnoreCase(String str)

Comparison between equals() and ==
o The equals() method compares the characters inside a String object.

Prepared By: Shiba R. Tamrakar

7

o The == operator compares two object references to see whether they

refer to the same instance.
Example

Class EqualsNotEqualTo
{

String s1=”Hello”;
String s1=new String(s1);

System.out.println(s1+”equals”+s2+”->”+s1.equals(s2));

System.out.println(s1+”==”+s2+”->”+s1==s2);

}
Int indexOf(int ch)

Int lastIndexOf(int ch)
Int indexOf(String str)

Int lastIndexOf(String str)
String substring(int startIndex)

String substring(int startIndex, int endIndex)
String Concat(String str)

String replace(char original, char replacement)

String str.trim()

StringBuffer

 It is a peer class of String that provides much of the functionality of strings.
 In contrast to String StringBuffer represents grow able and writeable

character sequences.
 It may have characters and substrings inserted in the middle or appended to

the end.
 It will automatically grow to make room for such additions and often has

more characters per allocated than are actually needed, to allow room for

growth.
StringBuffer Constructors

StringBuffer()
StringBuffer(int size)

StringBuffer(String str)

Converting Strings to Numbers

When processing user input it is often necessary to convert a String that the user

enters into an int. The syntax is straightforward. It requires using the static

Integer.valueOf(String s) and intValue() methods from the java.lang.Integer class.
To convert the String "22" into the int 22 you would write

int i = Integer.valueOf("22").intValue();

Doubles, floats and longs are converted similarly. To convert a String like "22" into

the long value 22 you would write

long l = Long.valueOf("22").longValue();

To convert "22.5" into a float or a double you would write:

Prepared By: Shiba R. Tamrakar

8

double x = Double.valueOf("22.5").doubleValue();

float y = Float.valueOf("22.5").floatValue();

The various valueOf() methods are relatively intelligent and can handle plus and

minus signs, exponents, and most other common number formats. However if you

pass one something completely non-numeric like "pretty in pink," it will throw a
NumberFormatException. You haven't learned how to handle exceptions yet, so try

to avoid passing theses methods non-numeric data.

You can now rewrite the E = mc2 program to accept the mass in kilograms as user
input from the command line. Many of the exercises will be similar.

class Energy {

 public static void main (String args[]) {

 double c = 2.998E8; // meters/second
 double mass = Double.valueOf(args[0]).doubleValue();

 double E = mass * c * c;
 System.out.println(E + " Joules");

 }
}

Here's the output:

$ javac Energy.java

$ java Energy 0.0456
4.09853e+15 Joules

Testing for Equality with equals()

That's not what you expected. To compare strings or any other kind of object you

need to use the equals(Object o) method from java.lang.String. Below is a corrected

version that works as expected. The reasons for this odd behavior go fairly deep into
Java and the nature of object data types like strings.

class JackAndJill {

 public static void main(String args[]) {

 String s1 = new String("Jack went up the hill.");
 String s2 = new String("Jack went up the hill.");

 if (s1.equals(s2)) {

 System.out.println("The strings are the same.");
 }

 else {
 System.out.println("The strings are not the same.");

 }

 }
}

Prepared By: Shiba R. Tamrakar

9

Vector

 An array is a collective type of variable which stores data in sequential
memory blocks. Index is used to access any value in array

 ArrayList is class that extends AbstractList and implements the List interface
which s

 Vector implements a dynamic array which is similar to ArrayList.
 Vector constructors:

Vector()
Vector(int size)

Vector(int size, int incr)

Vector(collection c)
 Vector (): Default vector which has an initial size of 10.

 Vector (int size): Vector whose initial capacity is specified by size.
 Vector (int size, int incr): vector whose initial capacity is specified by size

and whose increment is specified by incr. The increment specifies the number
of elements to allocate each time that a vector is resized upward.

 Vector (Collection c): Vector that contains the elements of collection c.
 When an object is to store on the vector and there is no space or have less

space to store those objects then these no. of elements is automatically

incremented.
 By default the vector size is incremented by doubled by each allocation cycle.

 Vector’s protected data members
int capicityIncrement;

int elementCount;
Object elementData[];

 capacityIncrement: The increment value is stored in it.
 elementCount: The no. of elements currently in the vector is stored in it.

 elementData: the array that holds the vector stored in it

 Methods
Void addElement(Object element)

The object specified by the element is added to vector
Int capacity()

The maximum number of elements that the vector can hold
Boolean contains(Object element)

Return true if element is contained by vector
void copyInto(Object array[])

Copy the content to an array

Object elementAt(int index)
Object firstElement()

int indexOf(Object element)
Boolean isEmpty()

Object LastElement()
int LastIndexOf(object element)

void removeAllEments()
void removeElementAt(int index)

void setElementAt(Object element, int index)

int size()
String toString()

Difference between vector and Array

Vector Array

1. It is dynamic 1. It is fixed in size

Prepared By: Shiba R. Tamrakar

10

2. It is a class and we can create its

object instances

2. It is a collective data type.

3. It can store multiple type of data in
single vector

3. It can store only on data type in single
Array

Two differences between Vector class and ArrayList
1. Vector is synchronized and it contains many legacy methods that are not part

of the collection framework.
2. In Java 2 Vector is fully compatible to collection as it extends AbstractList and

implement the List interface.

Difference between class, Abstract Class and Interface

Concrete Class Abstract Class Interface

 Specify the full

set of methods
for an object

 Specify the full set

of methods for an
object

 Specifies a subset of methods

for an object

 Implements all

of its methods

 Implements none,

some, or all of its
methods

 Implements none of its methods

 Can have

instances

 Cannot have

instances

 Cannot have instances

 Can have
subclasses

 Must have
subclasses;

otherwise useless

 Cannot have subclasses; must
have classes that implement it;

useless otherwise

Multithreading

Introduction to Multithreading

 A multithreaded program contains two or more parts that can run
concurrently.

 Each part of such a program is called a thread, and each thread defines a
separate path of execution.

 Multithreading is a specialized form of multitasking
What are the differences between Processes based multitasking and thread

based multitasking?

Process based Multitasking Thread based Multitasking

 A process is, in essence, a program

that is executed. Thus process based
multitasking is the feature that

allows our computer to run two or
more programs concurrently.

 A single program can perform two or

more tasks simultaneously.

 For example, process based

multitasking enables us to run the
Java compiler at the same time that

we are using a text editor.

 For example, a text editor can

format text at the same time that it
is checking the spelling.

 A program is the smallest unit of
code that can be dispatched by the

scheduler

 The thread is the smallest unit of
dispatch able code.

 It deals with the “big picture” It handles the details within the
program

Prepared By: Shiba R. Tamrakar

11

 It requires more overheads than

thread based Multitasking

 It requires less overhead than

process based Multitasking

 It is heavily weighted tasks that
require their own separate address

spaces

 It is light weight and shares the
same address space and

cooperatively share the same
heavyweight process.

 Inter process communication is

expensive and limited

 Inter thread communication is

inexpensive, and context switching
from one thread to the next is low

cost.

 It is not under the control of Java It is under the control of Java

 It relatively west more CPU time. It enables us to write very efficient
programs that make maximum use

of the CPU, because idle time can be
kept to a minimum.

 It have to finish the current task to

start another task with in a program

 It can handle multiple tasks

concurrently without requiring
finishing the current tasks.

What is the difference between multithreading and multitasking?

Multitasking Multithreading

 Multitasking is a broader term than
multithreading. Multitasking provides

multiple tasks to be done
concurrently.

 Specialized form of multitasking.
Multithreading is program that

contains two or more parts that can
run concurrently. Each part of such a

program is called thread.

The Java Thread Model

 Java run-time system depends on threads for many things, and all the class
libraries are designed with multithreading in mind.

 Java uses threads to enable the entire environment to be asynchronous. This

helps reduce inefficiency by preventing the waste of CPU cycles.
 Single-thread systems use an approach called an event loop with polling.

 In this model a single thread of control runs in an infinite loop, polling a single
event queue to decide what to do next.

 Once this polling mechanism returns with, say a signal that a network file is
ready to be read, then the event loop dispatches control to the appropriate

event handler.
 Until this event handler returns, nothing else can happen in the system.

 This wastes CPU time. It is also in one part of a program dominating the

system and preventing any other events from being processed.
 In general, in a singled-threaded environment, when a thread blocks because

it is waiting for some resource, the entire program stops running.
 The benefit of Java’s multithreading is that the main loop/polling

mechanism is eliminated.
 One thread can pause without stopping other parts of your program.

 For example, the idle time created when a thread reads data from a network
or waits for user input can be utilized elsewhere.

 Multithreading allows animation loops to sleep for a second between each

frame without causing the whole system to pause.

Prepared By: Shiba R. Tamrakar

12

 When a thread blocks in a Java program only the single thread that is blocked

pauses.
 All other threads continue to run.

 Threads exist in several states.
o A thread can be running.

o A thread can be ready to run as soon as it gets CPU time.
o A thread can be suspended, which temporarily suspends its activity.

o A suspended thread can then be resumed, allowing it to pick up where
it left off.

o A thread can be blocked when waiting for a resource.

o At any time, a thread can be terminated, which halts its execution
immediately.

Characteristics of Thread

Thread in java have five Characteristics, they are:

 Thread body
 Thread state

 Thread priority
 Daemon Threads

 Threads group.

Thread Body

 This is the sequence of instructions for thread to perform. This is defined in (

) method. There are two ways to supply a run method to a thread.
1. Extending a thread class and overriding the run() method,

2. Creating a thread by implementing the Runable interface.

Thread States

Every thread, after creation and before destruction, will always be in one of the six

states. They are:
 New

 Runnable

Fig: Thread states

New blocked

wait

Suspended

sleep

Ready List

Runnig

y
ie

ld
() s

ta
rt

(
)

Runnable
Waiting

Dead

Wait()

suspended()

sleep()

IO blocked

Prepared By: Shiba R. Tamrakar

13

o Ready

o Running
 Waiting

o Blocked
o Sleep

o Suspended
o Wait

 Dead
New

 A enters the newly created by using a new operator.

 It is in new state or born state immediately after creation; that is when a
constructor is called the Thread is created but is not yet to run () method

will not begin until its start () method is called.
 After the start () method is called, the thread will go to the next state,

Running state.
Runnable

Ready
o Once the start () method is invoked, the new thread is appended to

Queue (Ready List).

o When it is in queued state, it is waiting in the queue and competing for
its turn to spend CPU cycles.

o It is controlled by Virtual Machine Controller.
Running

 When the thread is running state, it is assigned by CPU cycles and is actually
running.

 When we use the yield () method it makes sure other threads of the same
priority have chance to run.

 This method causes voluntary move itself to the queued state from the

running state.
Waiting states

 The waiting state is entered when one of the following events occurs:
o The thread itself or another thread calls the wait () method.

o The thread itself calls the sleep() method
o The thread is waiting for some IO operation to complete.

o The thread will join () another thread.
o The thread itself or another thread calls the suspend () method.

 The thread in a block state will not be scheduled for running.

 It will go back to the Ready Queue when its cause of block is completed.
o If the thread is blocked by calling wait () method, the object’s notify

() and noifyAll () method is called.
o If a thread has been put to sleep, the specified number of milliseconds

must expire.
o If the thread is blocked on I/O, the specified I/O operation is

completed.
o If the thread is suspended, another thread calls its resume ()

method.

Dead
 A thread is dead for any one of the two reasons:

o It dies a natural death because the run method exits normally.
o It dies an abnormally because uncaught exception terminates the run

method.
 In particular the stop () method is used to kill the thread.

 We can use interruption for terminating the thread.

Prepared By: Shiba R. Tamrakar

14

 To find whether a thread is alive that is currently in runnable or Blocked state,

use the threads isAlive () method, if it returns true the thread is alive.

Thread Priority

 Every thread in java is assigned a priority value, when more than one thread
is competing for CPU time; the thread with highest priority value is given

preference.
 You can also use the Thread class constants.

Constants Integer value

Thread.MIN_PRIORITY 1

Thread.MAX_PRIORITY 10

Thread_NORM_PRIORITY 5

 The setPriority () method is used to set the priority value of a thread
 The getPriority () method is used to get the priority of the thread.

 The default priority is Thread.NORM_PRIORITY.

Daemon Thread

 This denotes that a thread is a “server” thread.

 A server thread is a thread that services client request.
 They normally enter an endless loop waiting for clients requesting services.

 To create a daemon Thread, call the setDaemon () method after the thread
creation and before the execution is started.

 The syntax is
setDaemon (boolean b)

o If b is true, the thread is marked as daemon thread. Otherwise, it is a

non-daemon thread.
 isDaemon (), this method returns true if this thread is a daemon else return

false.

Thread Group

 For large programs that generate many things, java allows us to group similar
threads and manage them as a group.

 Every thread instance is a member of exactly one thread group.
 When a program is started, the java virtual machine creates the main thread

group as a member of the system thread group.

 A new thread group is created by instantiating the ThreadGroup class.
 The getThreadGroup () returns the parent thread group of the thread.

o getParent() returns the parent Thread group of the thread group
o getName () returns the name of the thread group.

 The thread class defines several methods that help us to manage threads.

Method Description

Getname() Obtain the threads name

setName() Set the name of a thread

isAlive() Determine if the thread is still running

join() Wait for thread to terminate

sleep() Suspend a thread for specified time

Start Start a thread by calling its run Method

wait() This is used to make a thread wait.

Prepared By: Shiba R. Tamrakar

15

notify() This is used to wake a thread that is

waiting

notifyall() This is used to wake all the threads that
are waiting

Why to use Runnable interface.

Using the Runnable interface is a bit more complicated but it has two

advantages:

 The thread's run() method has access to the private variables of the class in

which it is located
 Since Java only has single inheritance, you may not be able to subclass

Thread if you also want your class to subclass something else. For example,
you cannot create an applet which is a subclass of Thread because your

applet is already a subclass of the Applet class.

